

Volume 12, Number 5—May 2008 Lebeau, Using Class Methods as API Callbacks, Part II

ISSN 1093-2097 2 C++Builder Developer’s Journal

n Part I of this series, I introduced some com-

monly used ways of using class methods as API

callbacks. I also gave a brief overview of the VCL’s

MakeObjectInstance() function. This month, I will

delve further into the inner workings of how MakeOb-

jectInstance() actually works. This knowledge

leads into Part III of this series, where I will introduce

a new proxy system I have developed for using class

methods as API callbacks in a much more flexible

manner than MakeObjectInstance() offers.

Why is MakeObjectInstance()
so important?
MakeObjectInstance() is at the core of Borland’s

message-handling architecture for HWNDs that are cre-

ated by the VCL. By using a few select x86 Assembly

instructions, Borland’s proxy code effectively dele-

gates a call from a seemingly non-class function into a

call to a class method, with the appropriate this

pointer value passed to it. The proxy does this by ma-

nipulating the call stack directly. This approach is far

more efficient than other frameworks, such as MFC,

which use messy lookup tables to accomplish the

same result (the ATL, by comparison, uses a proxy

system similar to Borland’s for handling WNDPROC-

oriented proxies).

MakeObjectInstance() is widely used by the

VCL, so Borland has optimized it to maximize its

memory usage while reducing its memory allocations.

I am not going to focus on that optimization in this

article. It does not pertain to this discussion, and the

code I will describe in Part III is more flexible than

MakeObjectInstance() and thus does not make use

of the same optimizations. I will instead focus on

what a single proxy instance contains internally and

how it does its work in general. If you want to know

what Borland optimized, you can study the VCL

source code on your own. It is available as an installa-

ble option in any C++Builder/Delphi version. As I

develop my own proxy code further, I may imple-

ment my own optimizations at a later time.

Diving In
When calling MakeObjectInstance(), you pass it a

pointer to a non-static class method of an existing ob-

ject instance. The class method must match the signa-

ture of the VCL’s TWndMethod type. MakeObjectIn-

stance() returns a void* pointer to a WNDPROC proxy

that you can then pass around and call like a normal

non-class function pointer (to actually call it yourself,

you will have to type-cast the void* pointer first). Re-

fer to Listing A for an example.

Normally, declaring and using a pointer-to-class-

method can be a little tricky in C++, especially when

different class types are involved. Such pointers are

class-specific, and calling class methods using them

requires the use of special operators. Refer to Listing

B for an example.

To support multiple pointer-to-class-method types

generically in a single function using standard C++,

you must use C++ templates instead. However,

MakeObjectInstance() is implemented in Pascal (as

is most of the VCL), so templates are out of the ques-

tion. Fortunately, Borland has implemented a com-

I

Using Class
Methods as API
Callbacks, Part II
By Remy Lebeau

Versions: C++Builder 2007, 2006, V6, V5, V4, V3, V1

Lebeau, Using Class Methods as API Callbacks, Part II Volume 12, Number 5—May 2008

C++Builder Developer’s Journal 3 www.bcbjournal.com

piler extension—the __closure keyword—that makes

it very easily to accomplish what is needed.

In a nutshell, a closure is a special structure con-

taining two pointers – one to the memory address of

the class method’s implementation code, and the

other to the object instance. When calling a method

via a closure, the compiler generates machine code

that sets up the call as if the method had been called

by your code normally. As long as a class method

matches the signature of the closure type, it does not

matter which class the method comes from. Also,

methods from different classes can be interchanged at

will within the same closure instance (which is how

VCL event handlers are able to work the way they

do).

You may be thinking to yourself: “MakeObjectIn-

stance() is given the memory addresses of the

method code and the object instance, so the proxy

should be able to just assign the this pointer and

jump into the method, right?” That is exactly what it

does. But how does it actually do that?

Inside __fastcall

Keep in mind that MakeObjectInstance() is specifi-

cally designed to work with class methods that match

the signature of TWndMethod. The first thing to look at

is the calling convention being used. Borland’s

__fastcall calling convention (another compiler ex-

tension) is the C++ analogue of Delphi’s Register

calling convention, which uses CPU registers (like its

name suggests)—specifically EAX, EDX, and ECX, in

that order—to accept the first three 32-bit-sized pa-

rameters from the caller. Subsequent parameters, or

any parameters that are larger than 32 bits (double,

__int64, etc), are passed on the stack instead, pushed

in left-to-right order, and the called method pops the

values from the stack when it exits. A return value, if

any, is stored in the EAX register upon exit. I will touch

on this more in Part III of this series.

When calling a non-static class method, the ob-

ject’s this pointer is passed as a hidden first parame-

ter. For the __fastcall convention, the this pointer

is passed to the class method via the EAX register.

TWndMethod has an explicit second parameter, which

is a reference to a TMessage structure. A reference is a

32-bit value, so it is passed to the class method via the

EDX register. TWndMethod does not use the ECX regis-

ter, so the proxy makes use of it for its own internal

purpose.

Inside __stdcall
The next thing to look at is the WNDPROC signature that

MakeObjectInstance() is wrapping:

typedef typedef typedef typedef LRESULT WINAPI (*WNDPROC)(
 HWND, UINT, WPARAM, LPARAM);

The __stdcall calling convention uses only the

stack for passing parameters. They are pushed on the

stack in right-to-left order, and the called method

pops the values from the stack when it exits. A return

value, if any, is stored in the EAX register upon exit. I

will touch on this more in Part III of this series.

Listing A: Listing A: Listing A: Listing A: Using Using Using Using MakeObjectInstance()MakeObjectInstance()MakeObjectInstance()MakeObjectInstance()

typedef void __fastcall typedef void __fastcall typedef void __fastcall typedef void __fastcall (__closure__closure__closure__closure
*TWndMethod)(TMessage&);

__fastcall __fastcall __fastcall __fastcall TMyClass::TMyClass()
{
 m_WndProc =
 MakeObjectInstance(&WndProc);
 m_DefProc = (WNDPROC)
 ::SetWindowLong(hSomeWnd,
 GWL_WNDPROC, (LONGLONGLONGLONG) m_WndProc);
}

__fastcall __fastcall __fastcall __fastcall TMyClass::~TMyClass()
{
 ::SetWindowLong(hSomeWnd, GWL_WNDPROC,
 (LONGLONGLONGLONG) m_DefProc);
 FreeObjectInstance(m_WndProc);
}

void __fastcall void __fastcall void __fastcall void __fastcall TMyClass::
 WndProc(TMessage &Message)
{
 // process Message as needed …
}

Listing B: Listing B: Listing B: Listing B: Example Example Example Example C++ mC++ mC++ mC++ method pointer usageethod pointer usageethod pointer usageethod pointer usage

typedef void typedef void typedef void typedef void (TMyClass::*TMyMethodPtr)(intintintint);

void void void void TMyClass::DoSomethingWith(int int int int Value)
{
 // use Value as needed …
}

void void void void DoSomething()
{
 TMyClass myObject;
 TMyMethodPtr method =
 &TMyClass::DoSomethingWith;
 (myObject.*method)(12345);
}

Volume 12, Number 5—May 2008 Lebeau, Using Class Methods as API Callbacks, Part II

ISSN 1093-2097 4 C++Builder Developer’s Journal

Converting from one to the other
Examining the two signatures, there are some simi-

larities, and there are also some differences, in how

they behave. So, the proxy has to do some clever con-

version to make a TWndMethod class method pointer

act as a WNDPROC function pointer. In C++, a simple

wrapper function might look something like the fol-

lowing:

LRESULT WINAPI WndProcWrapper(
 HWND hWnd, UINT uMsg, WPARAM wParam,
 LPARAM lParam)
{
 TMessage Msg;
 Msg.Message = (intintintint) uMsg;
 Msg.WParam = (intintintint) wParam;
 Msg.LParam = (intintintint) lParam;
 Msg.Result = 0;

 // this effectively calls
 // (object->*method)(Msg)…
 WndMethodPtr(Msg);

 returnreturnreturnreturn Msg.Result;
}

This code, in fact, is exactly what the MakeObjectIn-

stance() proxy is doing. However, the implementa-

tion is not written in C++, but instead in x86 Assem-

bly. And, there is still the question of where the proxy

gets the TWndMethod class method pointer so it knows

which object to call into. It is time to look inside the

implementation of the proxy itself.

Looking behind the curtain
The proxy that MakeObjectInstance() generates is

not actually a function, in the normal sense. It is a

block of executable memory that is dynamically allo-

cated at run-time using the Win32 API VirtualAl-

loc() function. The PAGE_EXECUTE_READWRITE flag is

used so the memory block can directly contain ma-

chine code that the CPU can run. The memory block

holds a specially designed 19-byte structure (OK, it is

a bit larger than that—I am simplifying the details

slightly). Listing C shows what this structure would

look like in C++ terms.

The memory block contains three x86 Assembly

instructions in it: CALL NEAR PTR [offset], POP ECX, and

JMP [offset], in that order. The CALL instruction is

stored at the very beginning of the memory block so it

is the first thing the CPU sees when the proxy stub is

executed. It contains an offset to the POP ECX instruc-

tion. The JMP instruction, which immediately follows

the POP ECX instruction in memory, contains an offset

to the actual code that performs the class method in-

vocation.

Wait—the code to call the class method is not in-

side the proxy itself? No, it is not. The actual logic to

set up and call the class method is contained inside a

wrapper function that is implemented within the VCL

source code. The proxy is just a general-purpose stub

to call the wrapper function, which then does the ac-

tual work. I utilize that fact in the new proxy system I

will describe in Part III of this series.

The odd part of the proxy stub is the CALL instruc-

tion. As you can see in Listing C, the TWndMethod

pointer immediately follows the CALL instruction in

the proxy’s memory block. Borland uses the CALL in-

struction in a roundabout manner to pass the

TWndMethod pointer to the invocation wrapper func-

tion. To briefly summarize, a CALL instruction essen-

tially just pushes the next instruction’s memory ad-

dress (a.k.a., the return address) from the CPU’s EIP

register onto the stack and then jumps execution to

the specified offset. The pushed address is where the

called code is supposed to return to when finished

(usually by calling the RET instruction). In this case,

however, the CALL is actually pushing the memory

address of the TWndMethod pointer onto the stack, and

then jumping to the POP ECX instruction. That instruc-

tion then pops the TWndMethod pointer off of the stack

and puts it into the ECX register. The subsequent JMP

instruction then jumps to the invocation wrapper

function, where the real fun begins.

Inside the wrapper function
Why does the proxy go to all this effort? The invoca-

tion wrapper function that is implemented by the

VCL—StdWndProc()—is a WNDPROC callback. The

Listing C: Proxy stubListing C: Proxy stubListing C: Proxy stubListing C: Proxy stub

#pragma pack(push, 1)
structstructstructstruct TProxyStub
{
 unsigned charunsigned charunsigned charunsigned char CallOp;
 intintintint CallOffset;
 TWndMethod Method;
 unsigned charunsigned charunsigned charunsigned char PopEcxOp;
 unsigned charunsigned charunsigned charunsigned char JmpOp;
 inininintttt JumpOffset;
};
#pragma pack(pop)

Lebeau, Using Class Methods as API Callbacks, Part II Volume 12, Number 5—May 2008

C++Builder Developer’s Journal 5 www.bcbjournal.com

CALL/POP/JMP trio allows execution to flow into

StdWndProc() as if the OS had called it directly, even

though it really did not. However, the CALL/POP pair

loads the target TWndMethod pointer into the ECX reg-

ister first, which would not have happened otherwise.

So what does StdWndProc() do? Essentially, it

does the same as the WndProcWrapper() method

shown earlier, but is implemented in x86 Assembly.

Here’s the code:

functionfunctionfunctionfunction StdWndProc(Window: HWND; Message,
 WParam: Longint; LParam: Longint):
Longint; stdcallstdcallstdcallstdcall; asseasseasseassemmmmblerblerblerbler;
asmasmasmasm
 XOR EAX,EAX
 PUSH EAX
 PUSH LParam
 PUSH WParam
 PUSH Message
 MOV EDX,ESP
 MOV EAX,[ECX].Longint[4]
 CALL [ECX].Pointer
 ADD ESP,12
 POP EAX
endendendend;

Remember that the TWndMethod pointer is stored in

the ECX register. Upon entry, the call stack is identical

to what it was when the proxy was first entered. A

standard stack frame is established (handled by the

compiler), copies of the WNDPROC parameters on the

stack are re-pushed on the stack in the layout of a

TMessage structure, whose memory address is then

stored in the EDX register (the second parameter of

__fastcall). The TWndMethod’s object pointer is then

stored in the EAX register (the first parameter of

__fastcall). Finally, a CALL to the TWndMethod’s

implementation code is made. The class method is

now running at this point!

Upon exit of the class method, execution returns

to StdWndProc(). It then copies the TMessage’s Re-

sult value to the EAX register (the return value) and

pops the TMessage from the stack. At this point, the

call stack is back to the same as when StdWndProc()

was first entered, so the standard stack frame is

cleaned up (again, handled by the compiler) and exe-

cution jumps to the original return address of the

caller that invoked the proxy. The OS has just called a

class method without ever realizing it!

Conclusions
In Part III of this series, I will introduce the new proxy

system I have designed, and show examples of its use

in C++ code. I am taking the MakeObjectInstance()

system to a whole new level that has never before

been explored by Borland development tool users.

There are some really neat tricks available now for

API users to take advantage of, so stay tuned.

Contact Remy at remy@lebeausoftware.org.

Interested in writing for the C++Builder DeveInterested in writing for the C++Builder DeveInterested in writing for the C++Builder DeveInterested in writing for the C++Builder Devel-l-l-l-

oper's Journal? oper's Journal? oper's Journal? oper's Journal? Great! We're always on the lookout

for new authors with fresh ideas. Your article can

be as short as a quick tip or as long as a multipart

series. If you have an idea, please don't hesitate to

run it by our editors. For more information, please

visit: http://bcbjournal.com/authors.php.

