

Volume 12, Number 6—June 2008 Lebeau, Using Class Methods as API Callbacks, Part III

C++Builder Developer’s Journal 17 www.bcbjournal.com

or several months now, I have been working on

a new set of proxy code that abstracts out Bor-

land's MakeObjectInstance() proxy architec-

ture so it can be used with any non-static class method

of any signature, even virtual methods. The key to this

is the invocation wrapper function that the proxy uses

to invoke a class method. The wrapper function is

now a user-defined value on a per-proxy basis. This

way, you can custom tailor your own proxies if the

ones I provide do not suit your needs.

Foreword
At the time of this writing, my new code is not quite

ready for release yet. I am still working out some

technical issues with it. So there will be a Part IV

added to this series, which will provide the code and

focus on demonstrating how to use it in your projects.

Optimizations and thread
safety
In Part II of this series, I mentioned that Borland op-

timizes its memory usage inside of MakeObjectIn-

stance(), and that I would not be using the same

optimization in my code. In a nutshell, the proxy cre-

ated by MakeObjectInstance() is relatively small in

size and is fixed-length. When allocating executable

memory, the smallest amount that can be allocated at

a time is 4K, so MakeObjectInstance() fills each

memory block with as many proxy instances as it can

fit and then reuses them as needed. This cuts down on

the number of allocations needed during the process’s

lifetime.

Since then, after a few design changes in my

proxy stub, I ended up implementing the same opti-

mization in my code after all. However, I have taken it

a couple of steps further.

A major limitation of MakeObjectInstance() is

that it is not thread-safe. So I have added an optional

CRITICAL_SECTION around my memory blocks. It is

not enabled by default. If you plan to use proxies in

multiple threads, then you can define OB-

JPROXY_MULTITHREADED in your project options to

enable it.

MakeObjectInstance() also never frees memory

pages it allocates. I have implemented a CompactOb-

jectProxyMem() function to release any memory

blocks that are cached but no longer in use. If you use

proxies for short periods, you can use this to free

available memory if you know you won’t need it

anymore.

Introducing the new proxy
functions
I have made several types of passthrough proxies and

conversion proxies. They support the standardized

__cdecl and __stdcall calling conventions that most

C/C++ compilers implement, as well as both Bor-

land's and Microsoft’s __fastcall calling conven-

tions (Borland supports Microsoft’s __fastcall con-

vention via its own __msfastcall compiler exten-

sion). The core of my new proxy system is the

MakeObjectProxy() function. It allocates the actual

proxy stub. Two other functions—

MakePassthroughObjectProxy() and MakeConver-

sionObjectProxy()—call MakeObjectProxy() inter-

nally. Refer to Listing A for declarations.

F

Using Class
Methods as API
Callbacks, Part III
 By Remy Lebeau

Versions: C++Builder 2007, 2006, V6, V5, V4, V3, V1

Lebeau, Using Class Methods as API Callbacks, Part III Volume 12, Number 6—June 2008

ISSN 1093-2097 18 C++Builder Developer’s Journal

MakeObjectProxy()
As input, MakeObjectProxy() accepts an object

pointer, the memory address of the class method’s

implementation code, the memory address of the

wrapper function that will invoke the class method,

and the CPU register used to pass the proxy’s data to

the wrapper function. Most of my proxies use the ECX

register to pass proxy data to the invocation wrapper

function, just like Borland’s MakeObjectInstance()

proxy does. However, some proxies need to use ECX

for other purposes, so the CPU register is user-defined

for flexibility. This is especially useful if you want to

implement your own custom proxies.

MakePassthroughObjectProxy()
MakePassthroughObjectProxy() creates a pass-

through proxy. This type of proxy is used when the

source and destination signature types exactly match

each other, other than the omission of the hidden this

parameter from the source signature type.

 A pass-through proxy is very flexible because it

preserves the caller’s parameters on the call stack and

registers, allowing the class method to use them as-is.

This is especially important for __cdecl functions that

use variable argument lists, and __fastcall func-

tions that use stack-based parameters. No special logic

has to be implemented to handle parameters. The only

modification performed is to inject the target object’s

this pointer into the class method invocation.

MakeConversionObjectProxy()
MakeConversionObjectProxy() creates a conversion

proxy. This type of proxy is used when the source and

destination signature types differ only in calling con-

ventions, but otherwise match each other in parame-

ters and return types. Extra work is needed to ma-

nipulate the call stack and registers of the source type

to operate within the semantics of the destination

type. I have provided conversion proxies that handle

conversions between the four supported calling con-

ventions.

MakeWndMethodObjectProxy()
For custom proxies, you need to call MakeObject-

Proxy() directly, passing your own wrapper func-

tions to it. The VCL’s MakeObjectInstance() func-

tion is a good example of such a proxy. Not only does

it convert from __stdcall to Borland’s __fastcall,

but it also manipulates the call stack to accept four

input parameters from the OS and put them into a

single TMessage structure that is then passed to any

class method that matches Borland’s TWndMethod sig-

nature. I have included a MakeWndMethodObject-

Proxy() function as a direct replacement to the

MakeObjectInstance() function to demonstrate this

concept within my proxy system.

Template helpers

You may notice that my functions are expecting

pointer-to-class-method addresses to be passed as

void* pointers. C++ does not allow a pointer-to-class-

method to be converted to a void* (the compiler will

Listing A: Listing A: Listing A: Listing A: Proxy creation functions

enum enum enum enum OBJPROXY_CONVENTION
{
 OBJPROXY_CDECL,
 OBJPROXY_STDCALL,
 #if defined(
 OBJPROXY_SUPPORTS_BORLAND_FASTCALL)
 OBJPROXY_BORLAND_FASTCALL_0,
 OBJPROXY_BORLAND_FASTCALL_1,
 OBJPROXY_BORLAND_FASTCALL_2,
 #endif
 #if defined(
 OBJPROXY_SUPPORTS_MICROSOFT_FASTCALL)
 OBJPROXY_MICROSOFT_FASTCALL_0,
 OBJPROXY_MICROSOFT_FASTCALL_1,
 OBJPROXY_MICROSOFT_FASTCALL_2,
 #endif
 OBJPROXY_MAX_CONVENTIONS
};

enum enum enum enum OBJPROXY_CPUREGISTER
{
 OBJPROXY_EAX,
 OBJPROXY_EBX,
 OBJPROXY_ECX,
 OBJPROXY_EDX,
 OBJPROXY_MAX_REGISTERS
};

voidvoidvoidvoid* MakeObjectProxy(void void void void *Object,
 void void void void *Method, void void void void *ProxyCode,
 OBJPROXY_CPUREG CPURegister =
 OBJPROXY_ECX);
void void void void FreeObjectProxy(void void void void *Proxy);
void void void void CompactObjectProxyMem(voidvoidvoidvoid);
voidvoidvoidvoid* MakePassthroughObjectProxy(
 void void void void *Object, void void void void *Method,
 OBJPROXY_CONVENTION Convention);
voidvoidvoidvoid* MakeConversionObjectProxy(
 void void void void *Object, void void void void *Method,
 OBJPROXY_CONVENTION SrcConvention,
 OBJPROXY_CONVENTION DestConvention);

Volume 12, Number 6—June 2008 Lebeau, Using Class Methods as API Callbacks, Part III

C++Builder Developer’s Journal 19 www.bcbjournal.com

report errors if you try), so I have provided extra

wrappers around the functions using C++ tem-

plates to help get around this issue.

Looking at the new proxies
I have implemented many ready-to-use wrapper

functions for invoking class methods. Refer to

Table 1 for the supported combinations.

Altogether, there are approximately two-

dozen proxies implemented. There are too many

details to explain exactly how each individual one

is implemented. The source code I will provide in

the next part of this series will be fully com-

mented, and will include examples of how to use

them in your own code.

The new proxy stub

The new proxy stub I have implemented differs from

the proxy stub that the MakeObjectInstance() func-

tion uses. The following code shows the new proxy

stub in C++ terms:

#pragma pack(push, 1)
struct struct struct struct TMovStub
{
 unsigned char unsigned char unsigned char unsigned char MovOp;
 void void void void *DataPtr;
 unsigned char unsigned char unsigned char unsigned char JmpOp;
 int int int int JmpOffset;
};

struct struct struct struct TProxyStub
{
 TMovStub Code;
 TProxyStub *Next;
 void void void void *MethodPtr;
 void void void void *ObjectPtr;
};
#pragma pack(pop)

If you recall from Part II of this article series, Bor-

land’s proxy stub uses the x86 Assembly CALL, POP

ECX, and JMP instructions to assign the target method

pointer to the ECX register before jumping into a proxy

wrapper function.

 As you can see from this code, I use a single MOV

E?X instruction instead of Borland’s CALL/POP pair

(where “?” can be A, B, C, or D, depending on the value

of the CPURegister parameter of MakeObject-

Proxy()). The effect is the same—upon entering a

wrapper function, the E?X register points to the stub’s

MethodPtr member, just like Borland’s proxy does—

but the logic is more direct, requires fewer instruction

bytes, and does not involve pushing/popping any

values to/from the stack. I have also restructured the

proxy stub to place all data members at the end of the

stub, rather than in the middle as Borland does.

A note about __cdecl proxies
The __stdcall and __fastcall calling conventions

both require the called method to pop parameters

from the stack when exiting. However, the __cdecl

calling convention requires the caller to do the pop-

ping instead. This causes a small problem for my

__cdecl conversion proxies. The caller’s return ad-

dress cannot remain on the stack while the proxy calls

the class method, otherwise any parameter(s) passed

in will be at the wrong offset(s). However, the return

address, and sometimes the CPU’s ESP register, must

be remembered so the proxy knows where to return

to when it is finished with its work, and to account for

differences in how different calling conventions man-

age the stack. At the time of this writing, these values

are stored in a temporary per-thread memory block

that is allocated and de-allocated for each proxy call.

So these proxies have slightly higher runtime over-

head. In the future, I may re-write the code to reduce

that overhead by caching the memory blocks.

 By using temporary memory blocks, this presents

another problem. Since a new memory block is being

allocated, it has to be freed after the called method

exits. However, the stack is not available for storing

extra data, so normal __try/__finally semantics

cannot be used to ensure cleanup is always per-

formed. So please make sure that any class methods

you implement for use with effected proxy types do

not throw exceptions back into the proxy code! Oth-

erwise, memory will be leaked, and stack corruption

Table 1Table 1Table 1Table 1: Prewritten proxy wrappers.

Passthrough proxies Conversion proxies

__cdecl to __cdecl __cdecl to __stdcall

__stdcall to __stdcall __cdecl to __fastcall

__fastcall to __fastcall __cdecl to __msfastcall

__msfastcall to __msfastcall __stdcall to __cdecl

 __stdcall to __fastcall

 __stdcall to __msfastcall

 __fastcall to __cdecl

 __fastcall to __stdcall

 __fastcall to __msfastcall

 __msfastcall to __cdecl

 __msfastcall to __stdcall

 __msfastcall to __fastcall

Lebeau, Using Class Methods as API Callbacks, Part III Volume 12, Number 6—June 2008

ISSN 1093-2097 20 C++Builder Developer’s Journal

may occur. In the next part of this series, after the

code has been solidified, I will list all of the specific

proxy types that are affected.

A note about __fastcall proxies

If you look closer at the OBJPROXY_CONVENTION enum,

you will notice special handling for __fastcall and

__msfastcall proxies. Both conventions use the stack

and CPU registers for passing parameters, depending

on their byte sizes and relative positions to each other.

This is different from __cdecl and __stdcall, which

use the stack exclusively instead. As such, this re-

quires some extra handling in __fastcall and

__msfastcall proxies, and thus has some limitations.

The suffix for those enum values denotes the number

of CPU registers, not the number of parameters,

which are available for a proxy wrapper function to

use for receiving 32-bit parameters.

 Even though __fastcall can use up to three CPU

registers to pass parameters around—EAX, EDX, and

ECX—only two of them can be used at most, for the

following reasons:

• For all __fastcall passthrough proxies, and for

conversion proxies that specify __fastcall as the

destination calling convention, the EAX register is

used for the object’s this pointer, so only the

EDX and ECX registers are available for passing

parameters to the class method. The caller could

use the EAX register when passing in three pa-

rameters, but the proxy would overwrite it.

• For conversion proxies that specify __fastcall as

the source calling convention, there is no way for

my wrapper functions to know whether any

stack-based parameters are being used, and in

what order they appear in relation to the register-

based parameters. Thus, those proxies are limited

to 32-bit parameters so that only CPU registers are

used.

 The __msfastcall convention, on the other hand,

uses only two CPU registers for passing 32-bit pa-

rameters, instead of three. So __msfastcall conver-

sion proxies are that much more limited.

 The example code I will provide in the next part

of this series will show how to use custom proxy

wrapper functions to get around these limitations

when needed.

Conclusions
Now that the underlying proxy logic has been ab-

stracted out, you can write your own custom proxies

to suit your particular needs. Of course, you need to

have an understanding of x86 Assembly and how

compilers use it to implement calling conventions.

 As I continue to develop this new proxy system

for my own use, I am hopeful that I will eventually be

able to further adapt it to other compilers and plat-

forms. Right now, it is primarily geared towards Bor-

land compilers, with minimal support for Microsoft

compilers.

Contact Remy at remy@lebeausoftware.org.

Interested in writing for the C++Builder DeveInterested in writing for the C++Builder DeveInterested in writing for the C++Builder DeveInterested in writing for the C++Builder Devel-l-l-l-

oper's Journal? oper's Journal? oper's Journal? oper's Journal? Great! We're always on the lookout

for new authors with fresh ideas. Your article can

be as short as a quick tip or as long as a multipart

series. If you have an idea, please don't hesitate to

run it by our editors. For more information, please

visit: http://bcbjournal.com/authors.php.

